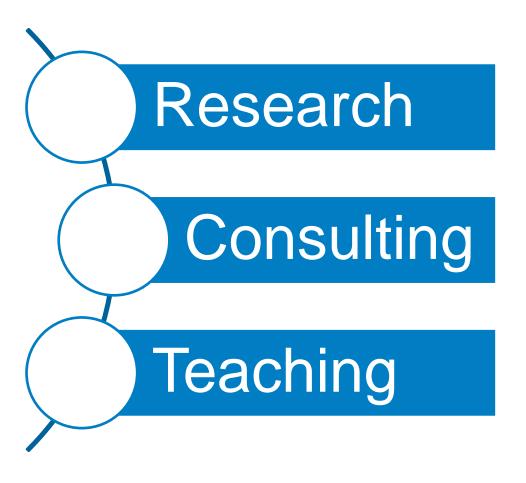
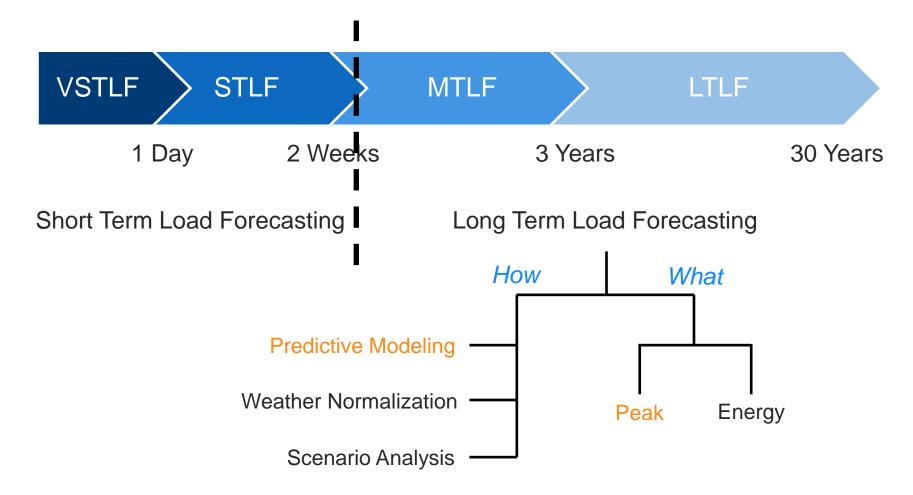
Modernization of Long Term Load Forecasting


An Integrated Approach Taking Advantage of Hourly Load and Weather Information

Tao Hong, PhD, Industry Consultant SAS Institute

Tao Hong



- Introduction
- Methodology
- Results
- Discussion
- Beyond this talk

- Introduction
- Methodology
- Results
- Discussion
- Beyond this talk

- Terminology
- Business needs
- Modernization
- Integrated forecasting

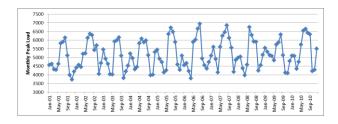
Terminology

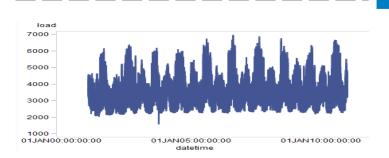
Terminology

Data

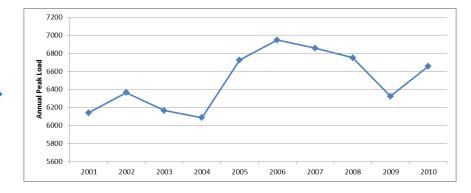
- Training: parameter estimation
- Validation: variable/model selection
- Test: predictive power assessment/confirmation

Process

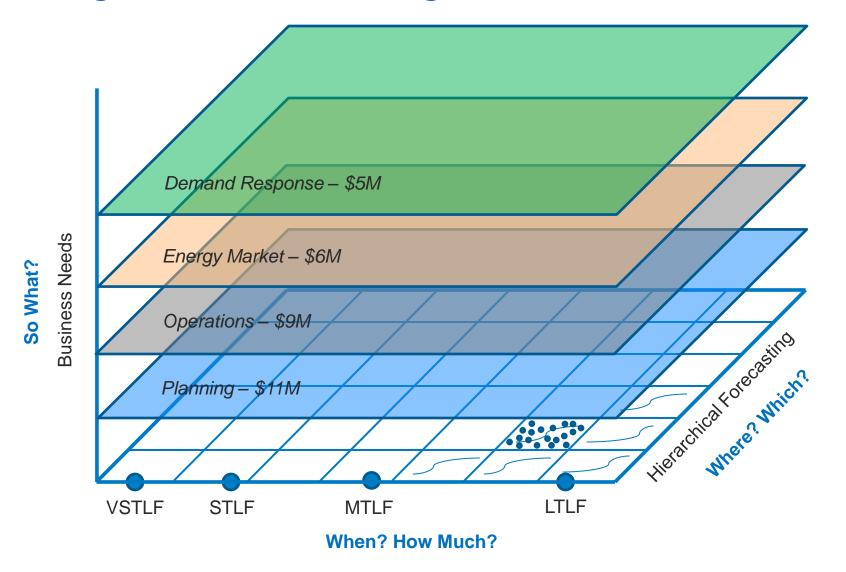

- Ex ante: before the event, genuine forecasting accuracy
- Ex post: after the event, answers "given the scenario, how accurate is my forecast"


Business Needs

- System planning
- Financial planning
- Rate case
- Energy trading


Modernization

Traditional Approach



Modern Approach

Integrated Forecasting

- Introduction
- Methodology
- Results
- Discussion
- Beyond this talk

- Build a STLF model
- Add macroeconomic indicator(s)
- Create weather scenarios
- o Create economy scenarios

Build a STLF Model

Naïve MLR Benchmarking Model

```
 E(Load) = \beta_0 + \beta_1 * Trend + \beta_2 * Day* Hour + \beta_3 * Month + \beta_4 * Month * T + \beta_5 * Month * T^2 + \beta_6 * Month * T^3 + \beta_7 * Hour* T + \beta_8 * Hour* T^2 + \beta_9 * Hour* T^3
```

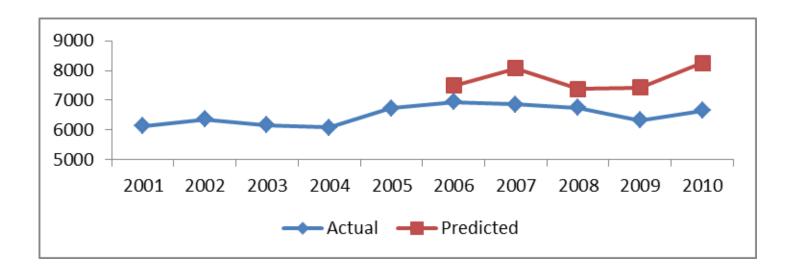
Recency effect

E(Load) =
$$β_0 + β_1^* \text{Trend} + β_2^* \text{Day*Hour} + β_3^* \text{Month} + β_4^* \text{Month*T} + β_5^* \text{Month*T}^2 + β_6^* \text{Month*T}^3 + β_7^* \text{Hour*T} + β_8^* \text{Hour*T}^2 + β_9^* \text{Hour*T}^3 + β_{10}^* \text{Month*T}(-1) + β_{11}^* \text{Month*T}(-1)^2 + β_{12}^* \text{Month*T}(-1)^3 + β_{13}^* \text{Hour*T}(-1) + β_{14}^* \text{Hour*T}(-1)^2 + β_{15}^* \text{Hour*T}(-1)^3 + ...$$

- Weekend effect
- Holiday effect
- ...

Tao Hong, *Electric Load Forecasting: Fundamentals and Best Practices*Course information webpage: https://support.sas.com/edu/schedules.html?id=1326

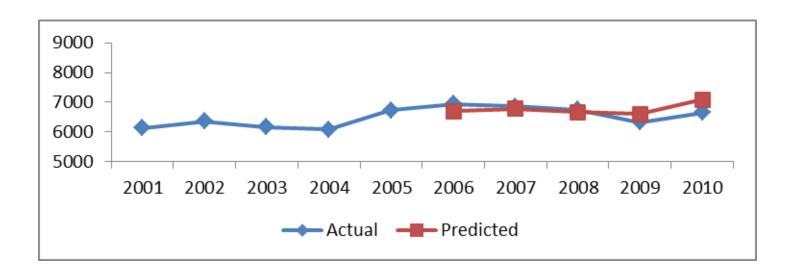
Add Macroeconomic Indicators


- Replace Trend by GXP
- Divide Load by GXP
- Interact GXP with other terms

- Introduction
- Methodology
- Results
- Discussion
- Beyond this talk

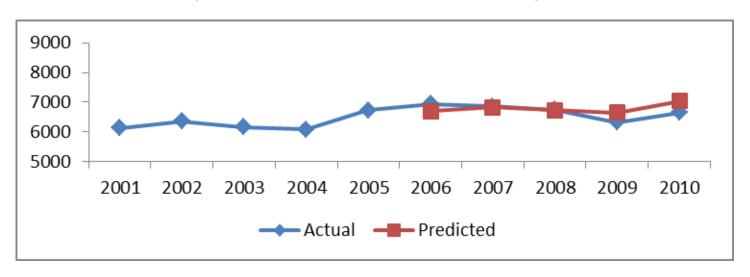
- Traditional approach
- Naïve MLR model
- Recency effect model
- Summary

Traditional Approach


E(Load) =
$$\beta_0 + \beta_1 *GSP + \beta_2 *HDD + \beta_3 *CDD + \beta_4 *T + \beta_5 *T^2 + \beta_6 *T^3 + \beta_7 *Month$$

	2006	2007	2008	2009	2010	Average
APE (%)	7.91	17.65	9.35	17.44	24.06	15.28

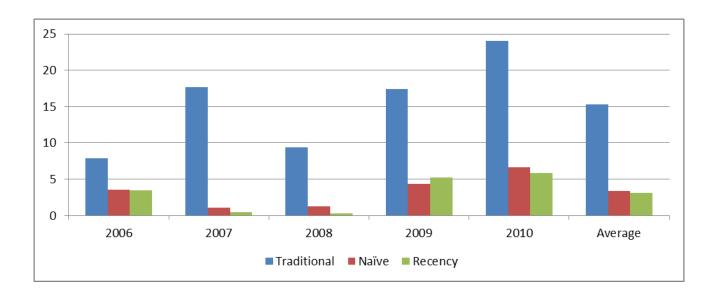
Naïve MLR Model


E(Load) =
$$\beta_0$$
 + β_1 *GSP + β_2 *Day*Hour + β_3 *Month + β_4 *Month*T + β_5 *Month*T² + β_6 *Month*T³ + β_7 *Hour*T + β_8 *Hour*T² + β_9 *Hour*T³

	2006	2007	2008	2009	2010	Average
APE (%)	3.58	1.12	1.29	4.35	6.64	3.40

Recency Effect Model

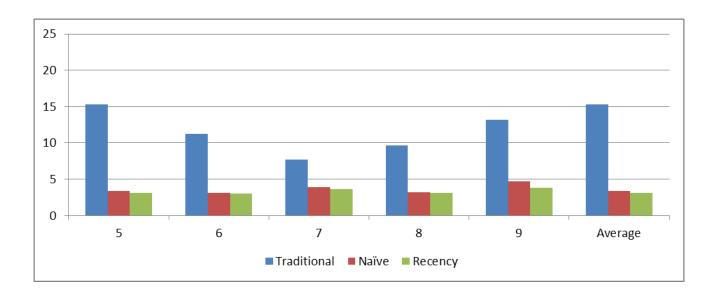
E(Load) = $β_0 + β_1*GSP + β_2*Day*Hour + β_3*Month + β_4*Month*T + β_5*Month*T² + β_6*Month*T³ + β_7*Hour*T + β_8*Hour*T² + β_9*Hour*T³ + β₁₀*Month*T(-1) + β₁₁*Month*T(-1)² + β₁₂*Month*T(-1)³ + β₁₃*Hour*T(-1) + β₁₄*Hour*T(-1)² + β₁₅*Hour *T(-1)³$



	2006	2007	2008	2009	2010	Average
APE (%)	3.48	0.49	0.30	5.27	5.84	3.08

Summary

Using 5-year history to forecast the next 5 years


	2006	2007	2008	2009	2010	Average
Traditional	7.91	17.65	9.35	17.44	24.06	15.28
Naïve	3.58	1.12	1.29	4.35	6.64	3.40
Recency	3.48	0.49	0.30	5.27	5.84	3.08

Summary

Altering the length of history

	5 years	6 years	7 years	8 years	9 years	Average
Traditional	15.28	11.27	7.71	9.67	13.15	10.29
Naïve	3.40	3.15	3.89	3.24	4.67	3.67
Recency	3.08	3.00	3.62	3.13	3.79	3.32

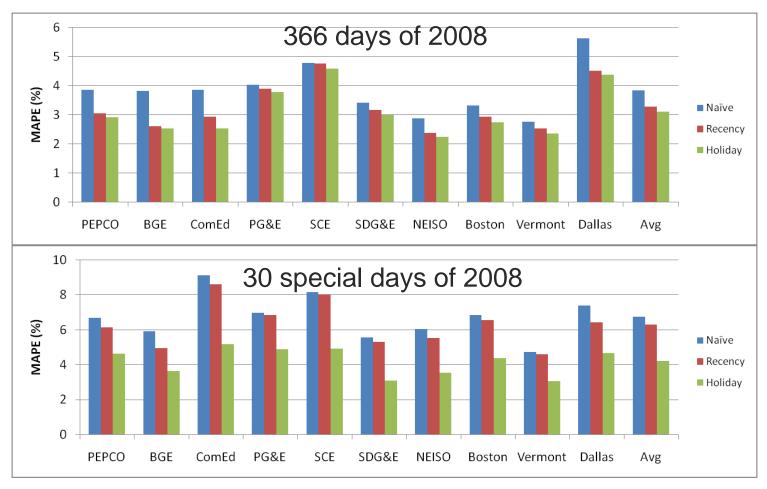
- Introduction
- Methodology
- Results
- Discussion
- Beyond this talk

- Complexity
- Improvement

Complexity

Traditional Approach

12 observations/year \times 10 years = 120 observations


120 observations / 20 parameters = 6 observations/parameter

Modern Approach

8760 observations/year \times 10 years = 87,600 observations

87,600 observations / 400 parameters = 219 observations/parameter

Improvement

Note: Results are for educational purposes only, not representing the best accuracy obtained for each utility.

Tao Hong, Electric Load Forecasting with Holiday Effect, AEIC Workshop 2012, Orlando, FL, Mar 19-20, 2012 21

- Introduction
- Methodology
- Results
- Discussion
- Beyond this talk

- SAS BKS course
 - Electric Load Forecasting
- IEEE Working Group on Energy Forecasting

SAS BKS Course

Electric Load Forecasting: Fundamentals and Best Practices

- Introduction to Electric Load Forecasting
- Salient Features of Electric Load Series
- Mulitiple Linear Regression
- A Naive Benchmark for Short-term Load Forecasting
- Customizing the Benchmarking Model
- Very Short-Term Load Forecasting
- Medium/Long-Term Load Forecasting
- Variables, Methods, Techniques, and Further Readings
- Frequently Made Mistakes

IEEE WG on Energy Forecasting

- Activities in PESGM 2011, Detroit, MI
 - Practical aspects of electric load forecasting
- Activities in PESGM 2012, San Diego, CA
 - Demand response: analytics, practice, and challenges in smart grid environment
 - Load forecasting and its applications in operations and planning
- Ongoing projects
 - Global Energy Forecasting Competition 2012
 - Benchmarking STLF accuracy
 - Review of literature and practice of load forecasting
 - IEEE Transactions on Smart Grid Special Issue on Analytics for Energy Forecasting with Applications to Smart Grid

http://sites.ieee.org/pes-pspic/about-pspi/subcommittees/energy-forecasting/

Tao Hong, PhD

Tao.Hong@sas.com SAS Institute

www.sas.com

Copyright © 2012, SAS Institute Inc. All rights reserved